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OPTIMAL CUTTING STOCK PROBLEM

d A paper company gets an order for:

Q 8rollsof 2ft papersoldat 250 $/roll
Q 6rollsof 25ft papersoldat 3.10 $/roll
Q 5rollsof 4ft papersoldat 5.25 $/roll
Q 4rollsof 3ft papersoldat 4.40 $/roll
d The company only has 13 ft of paper to fill these
orders; partial orders may be filled with full rolls

d Determine how to fill orders to maximize



DP SOLUTION APPROACH

1 A stage is an order and since there are 4 orders we

construct a 4 —stage DP




DP SOLUTION APPROACH

A state in stage nis the remaining ft of paper left

for the order being processed at stage n and all

the remaining stages

A decision in stage n is the amount of rolls to

produce in stage n :



DP SOLUTION APPROACH

F F

d ® 1, the largest integer in L—”

n n

where,

L = length of order = (ft)

F, = length of available paper (f#)

d The return function at stage n is the additional

revenues gained from producing d, rolls



DP SOLUTION APPROACH

d The transition function measures amount of paper
remaining at stage n

S =5 —d L n=2,3,4

n—1
S = 8~ d1L1

and s, needs to be as close as possibleto 0

d Clearly,




DP SOLUTION APPROACH

J The recursion relation is

fis) = max {R (s,.d )+ f, (s, )}

0<d, < S"}
Ln
where
§ -1 — Sn _ dnLn
and
f,(s) =0

f(G,d)y=rd +f (s —dL) n=1,234



DP SOLUTION APPROACH

d We assume an arbitrary order of the stages and

pick

d We proceed backwards from stage 1 to stage 4

and we know that



DP SOLUTION: STAGE 1

f:(sl) = max {rl(sl,dl)} = max {3.104d }

0<d <5 0<d <5
dl < E =5 Rl
2.5
dN 0 2 3 4 5 6 7 8 9 10 11 12 13
o/ 0 O O 0 O 0 O 0 0 0 0 0 0 0
1 3.10 3.10
2 6.20 6.20
3 9.30 9.30
4 12.40 12.40
5 15.50
f1(s) 0 0 310 310 620 620 6.20 9.30 9.30 12.40 12.40 12.40 15.50

0 0 1 1 2 2 2 3 3 4 4 4 5




DP SOLUTION: STAGE 2

fi(s;) = max {5254, + f)(s, - 44d,) }
0<d, <3
e

(N012345678910111213

0 0 0 0 310 310 6.20 6.20 6.20 9.30 9.30 12.40 12.40 12.40 15.50

1 |- - - - 525 52 525 835 835 11.45 11.45 11.45 14.55 1455
2 |- - - - - - - - 1050 1050 10.50 13.60 13.60 16.70
e . . - 1575 15.75

f (s,) O 0 0 310 525 6.20 6.20 8.35 10.50 11.45 12.40 13.60 15.75 16.70

d; 0 0 0 0 1 0 0 1 2 1 0 2 3 2




DP SOLUTION: STAGE 3

fi(s,) = max {4404 + fi(s,-3d)}

0<d, <4
13 \
d, <|—|=4 R
d ) 53 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0 3.10 525 6.20 6.20 835 10.50 1145 12.40 13.60 15.75 16.70
1 - - - 440 440 440 750 9.65 10.60 10.60 12.75 14.90 15.85 16.80
2 - - - - - - 880 880 8.80 1190 14.05 15.00 15.00 17.15
3 - - - - - - - - - 13.20 13.20 13.20 1630 18.45
4 - - - - - - - - - - - - 17.60 17.60
f ;(S 0 0 0 440 525 6.20 880 9.65 10.60 13.20 14.05 15.00 17.60 18.45
d ; 0 0 0 1 0 0 2 1 1 3 2 2 4 3




DP SOLUTION: STAGE 4

fi(s) = max {254 + fi(s,-2d)}

0<d, <6 \
d, < 13 =6

! 2 R,

o Jojrjefs]afs e ]a]fis)

d The maximum profits are $18.45



DP OPTIMAL SOLUTION

d The solution is obtained by retracing

f(s;,=0) =0 with d =0 < norollsof2.5fi

1 ¢ 1rollof4fi

f,(s,=4) 5.25 with 4,

f,(s,=13) =1845 with ¢, =3 <« 3rolls of 3 ft

f,(s,=13) =1845with d, = 0 < norolls of 2 ft



SENSITIVITY CASE

1 Consider the case that due to an incorrect
measurement, in truth, there are only 11 ft
available for the rolls

d We note that the solution for the original 13 ft
covers this possibility in the stages 1, 2 and 3
but we need to re-compute the results of

stage 4, which we now call stage 4’



SENSITIVITY CASE : STAGEY4’

4 The stage 4/ computations become

d4,S ? =5

N I I I
14.65

d The profits in this sensitivity case are $15.7




SENSITIVITY CASE OPTIMUM

d The retrace of the solution path obtains

d,=1 ¢ 1rollof2fi

d,=3 < 3rollsof3fi

d,=0 < 0Orollsof4fi

d,=0 <> 0rolls of 2.5 ft



ANOTHER SENSITIVITY CASE

d We consider the case with the initial 13 ft, but in
addition we get the constraint that at least 1 roll of
2 ft must be produced.:
d, 21
1 Note that no additional work is needed since the
computations in the first tables have all the
necessary data

d This sensitivity case optimum profits are $ 18.2

4 The optimum solution is :



OPTIMAL CUTTING STOCK PROBLEM

18.2 with d,, =2 « 2rolls of 2 ft

f:,,(s4 =13)

f (s, =9) 13.2 with 4., =3 ¢ 3rollsof 3 ft

and since s,=5,=0 d,, =0 < Orollsof4 fi

d, =0 < Orollsof25 ft

1

J The additional constraint reduces the

from $18.45to $18.2 and so it costs $.25



INVENTORY CONTROL PROBLEM

A This problem is concerned with the development

of an ordering policy for a retailer

] The sales of a seasonal item has the demands




INVENTORY CONTROL PROBLEM

A All units sold are purchased from a vendor at 4
$/unit ; units are sold in lots of 10, 20, 30, 40 or 50

with the corresponding discount

discount
I5COU 4 5 10 20 25
%



INVENTORY CONTROL PROBLEM

 There are additional ordering costs: each order
incurs fixed costs of $ 2 and $ 8 for shipping,
handling and insurance

1 The storage limitations of the retailer require that
no more than 40 units be in inventory at the end of
the month and the storage charges are 0.2 $/unit;
there is O inventory at the beginning and at the
end of the period under consideration

4 Underlying assumption: demand occurs at a
constant rate throughout each month



DP SOLUTION APPROACH

d We formulate the problem as a DP and use a

backward process for solution

d Each stage corresponds to a month

Oct Nov Dec Jan Feb Mar

-



DP SOLUTION APPROACH

d d d d d d

6 S 4 3 2 1

SRS SR S SRR S

S¢| stage | 55| stage | S4| stage| S| stage|S,|stage il"stage So

= s 4 P13 o e
T
IQG R5 IQ4 R3 RZ Rl

d R i IS the contribution to the total cost of the ordering

policy from the stage ndecision,n=1,2,...,6



DP SOLUTION APPROACH

4 The state variable s In stage n is defined as the
amount of inventory that is stored from the
previous month, taking into account that n
additional months remain in the planning period
—the month corresponding to stage n plus the

months in the stagesn-1,n-2,...,1



DP SOLUTION APPROACH

4 The decision variable d, in stage nis the amount
of units ordered to satisfy the n remaining months’
demands D,and D;, j = n—1,n-2, ..., 2, 1

A The transition function is defined by

N

0 s =0 demand in month n

0 6

s ,=s +d —-D_ n=12,..,6

-
|



DP SOLUTION APPROACH

d The return function in the stage n iIs given by
r(s.,d) =¢(d)+h (s +d — D)

ordering  0-2(s,+d —D )
COStS storage costs
with
d = 0,10,20, 30,40 or 50

6(d) = 10 +4[1- p(d)d ford = 10,20, 30,40, 50
— L

fixed discount
Costs factor

¢(d )=20 for dn =0



DP SOLUTION APPROACH

“n

d In the DP approach, at each stage n, we minimize
the costs for the order in the stagen,n-1,..,1

fi(s) = n:lin{ o)+ h[s, +d =D |+ f (s,)}
! n=1..,6

f(s,))=0andso f(s,) = 0



DP SOLUTION: STAGE 1

»=> s, =20,100r 0=d, = 0,10 or 20

f1(s,) = minjg(d,) + 0} = 4(d))




DP SOLUTION: STAGE 2

2
Il

s, +d,—30 since D, = 30
— min {¢(d)+ 0.2[s, + d,-30] + £(s)}

N
N %
~
)
N
 ——
I

n




DP SOLUTION: STAGE 3
s,+d, —40 since D, = 40
— n;in{ o(d. )+02[s +d, —40]+f (s )}

n

2
]

\

%
/-\
M
\—/
|

40

20
10
0



DP SOLUTION: STAGE 4

s, +d,—30 since D, = 30

—n;in{¢(d)+02|: C+d, —30]+f (s)}

“»
Il

\

%
/—\
%
v
I

-
n
414




DP SOLUTION: STAGE 5
s. +d.—20 since D_ =20
fi(s,) = min{ 0. )+02[s + d, —20]+f (s, )

B I N I

“»
Il




DP SOLUTION: STAGE 6

D, =40and s =0
s. =s. +d, —40=d_ -40
fils) = min{ 9(d )+ 02[s, + d - 40] + £1(s)) |

d S

S
N7 N N I I I P )
el | ] ] ee]en] o fen

d=40=d.=50=>d =0=>d =40 = d,=50=>d =0



OPTIMAL SOLUTION

whichimplies s, =0 andcosts 606
whichimplies s, =30 andcosts 468
whichimplies s, =0 andcosts 302
whichimplies s, =0 andcosts 302
whichimplies s, =20 and costs 164

with costs 0



OPTIMAL SOLUTION

d.=40 d.=50 d,=0

d=40 d;=50 d =0

s, =0 s.=0] s5,=30 =( s, =01 s =201s, =0
\ 4 \ 4 \ 4 \ 4 \ 4 v 0
stage| |stage| |stage| |stage| |stage| | stage
r. (0,40) r, (30,0) r, (0,50)
=138 v = () < =164 v
r, (0,50) r, (0,40) r, (20,0)
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OPTIMAL SOLUTION

d The optimal trajectory is

So=0—5,=20—~§,=0—S,=0 —5,=30 — S, =0

d The total costs for the sequence of orders are
given by

0 + 164 + 138 + 0 + 166 + 138 = 606
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MUTUAL FUND INVESTMENT
STRATEGIES

d We consider a 5-year investment of

0 10k$ invested in year 1
0 1Kk$ invested in each year 2, 3,4 and 5 into
2 mutual funds with different yields for both
the short-term (1 year) and the long-term (up
to 5 years)
1 The decision on the allocation of investment In

each fund is made at the beginning of each year



MUTUAL FUND INVESTMENT

STRATEGIES

d We operate under the following protocol:
Q each fund returns short—term dividends and
long—term dividends

Q onc

e invested, the money cannot be

withdrawn until the end of the 5 — year period
Q all short—term gains may either be reinvested

N O

ne of the two funds, or withdrawn: in the

latter case, the withdrawn funds earn no

furt

d Our obj

ner interest
ective I1s to maximize the total returns at

the eno

of 5 years



MUTUAL FUND INVESTMENT

STRATEGIES

 The earnings on the investment are

Q LTD:

Q STD :

the long—term dividend specified as %/
year return on the accumulated capital
the short—term interest dividend
returned as cash to the investor at the
end of the period; cash may be invested
In either fund and any money not

Invested earns no return



MUTUAL FUND INVESTMENT
PARAMETERS

STD rate 1, for year n
LTD
fund
rate |
1 2 3 4 5

A 0.02 10.0225]0.0225] 0.025 | 0.025 | 0.04
B 0.06 |0.0475] 0.05 | 0.04 | 0.04 | 0.03



DP SOLUTION APPROACH

d We use backwards DP to solve the problem

1 The stages are the 5 investment periods

stagenéyear 6—n n=1,2,3,4,5

rsT I, I rzT rlT
5
5

— 4 M 3 P > 1 P

1t 1

d d d d

4 3 2 1

s. | stage|s, | stage|s.|stage |s, | stage il’|stage S,

T
d



DP SOLUTION METHOD

4 For stage n , the state s_Is the capital available for
iInvestment in the year 6—n

d The decision 4 Is the amount of capital invested
in fund A in year 6—n and so the amount of
capital invested in fund B in the year 6—n IS
s —d

 In each year, we determine the amount to invest
in fund A and in fund B in order to optimize the

returns at the end of year 5



DP SOLUTION METHOD

d The backward recursion application considers year 5
first and then each previous year in sequence
 Basic considerations:

Q for each of the stages 6—-n, n=1, ..., 5,

d isinvestedin fund A withreturns ¢ i (STD)
and (s, - d )is invested in fund B with returns

(s -d )i, (STD)



DP SOLUTION METHOD

Q for the stage 6 -n + 1, the STDs are augmented
by $1,000

s =d i +(s -d)i, +1,000 n =2,3,4,5

n-1

Q For the stage 5, we have the initial investment

s. = 10,000



THE OBJECTIVE

d The objective is to maximize the total returns
max R = ZS: r, evaluated at the end of year 5

d We exprergé all returns in the end of the year 5
dollars: r,is the future value of long —term
earnings intheyears 1,2,3and 4
ro=0+1)'d +(A+1)"(s —d) n=1,...,5

4 But for n=1, r, is the present value of all earnings
In stage 1
r=0A+1)d +A+1,)(s,—d)+id +i, (s, —d))



DP SOLUTION: STAGE 1

d For stage 1

=

]
dl
where

ro=A+1)d +A+1)(s,—-d)+i d +1i (s —d))

= (I, +i,—1,—i,)d +QA+1,+i,)s,



DP SOLUTION: STAGE 1

d r, = earnings in stage 1 (associated with the
stage 1 decision)
d. (I, +i -1, —i )+
f:(s1)= max {r .} = max- A v .
d, d, 5 Ad+71,+1i,)

d(0.04 +0.025 — 0.03 — 0.04) +
= max 9 e
0<d, <s, |s,(1+0.03 + 0.04)

I

= max {d (- 0.005)+ s (1.07 maximum
. dy {1( )+ )} &~ returnin
optimal

decision\”f; =0 with f:(sl) = 1.0751 stage 1



DP SOLUTION: STAGE 2

d r, = returns associated with the decision in

stage 2 realized at the end of 5 years
=d,(1+1) +(s,—d,)A+1,)
=d,[(1+1,Y —(A+1,)|+s,0+1,)

d As aconsegquence of the decision d,. the funds

for investment in stage 1 are

s =s,i +d (i —i,)+1,000



DP SOLUTION: STAGE 2

d We select d; to maximize

f;(sz) _ nflax {’”2 + f:(sl)}

2

d,(.0207) + 1.0609s, +
0=d, <5, |1.07] .04s, + d,( - .015) +1,000]

max {al2 (1.04* — 1.03%) + 5, (1.03)* + fj(sl)}
d2

max {d,(.0046) +1.1037s, + 1,070}

dy

d =s with f;(sz) = 1.108s, + 1,070

2 2



DP SOLUTION: STAGE 3

d I, = returns associated with the decision d,

realized at the end of 5 years

= d, (1+IA)3 + (s, _d3)(1+13)3

=d, [A+1) -QA+1,)° |+s, (1+1,)°

d As aconsequence of the decision d; the funds

for investment in stage 2 are

s, =s i, +d (i, —i,)+1,000



DP SOLUTION: STAGE 3

d We select 4 to maximize

fi(sy) = max {ro+ i)}

3

d,(1.04° —1.03%) +5,(1.03)° +
max A
i, |1.108s, +1,070

= max {2,178 + 1.1481s, +.00184 |
0<d;<s,;

d =5 with f;(s3)= 1.15s,+2,178

3 3



DP SOLUTION: STAGE 4

d r, = returns associated with the decision d,

realized at the end of 5 years

=d, (1+IA)4+(S4 _d4)(1+13)4

=d, [A+1)' —A+1I)" |+s5, A+1,)"*
d The funds for investment in stage 3 depend
explicitly on d,

s, =s,i,,+d (i, —i,,)+1,000



DP SOLUTION: STAGE 4

d We select d, to maximize

fi(s,) = max {ro+ f1s)}

max {d,(1.04* - 1.03*)+s,(1.03)* +1.155, +2,178}
d,

max {3328+1.1772s,+.01564 |
d,<s,

d'=s, with fi(s,) =1.193s, + 3,328

4 4



DP SOLUTION: STAGE 5

d I, = returns associated with the decision d .

realized at the end of 5 years
= d5(1+IA)5 + (s, —ds)(1+IB)5

= d_[1.04° - 1.03° |+ 5, (1.03)°

d The funds available in stage 5 are
s. = 10,000

d Therefore, the funds available for investment in

stage 4 are



DP SOLUTION: STAGE 5

s, =s.i +d (i, —i,)+1,000

= 10,000/, +d_(i,, —i.,)+1,000
d We select 4, to maximize

r )

I\
'

f;(ss) = max

10,000(1.03)° + ¢_(1.045-1.03%)+ £(s,)
0Sd5 SS4 ' | l |

11,593 0.0574

\ J

1,000+ 600+ d_(—-.04) {1.193+ 3,328

v

S




DP SOLUTION: STAGE 5

max

0<d;<s; \

A

f

16,830 + d_ (0.0574 — 0.048)
| 0.097 |

= 16,830 + 0.097(10,000)

d’. = 10,000

with  f.(s,) = 16,927

\

v

J



OPTIMAL SOLUTION

optimal return at end of 5 years is 16,927 using the
following strategy

1 10,000

2 STD returns + 1,000

3 STD returns + 1,000

4 STD returns + 1,000

5 0 STD returns + 1,000
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