ECE 307 – Techniques for Engineering Decisions

Lecture 8b. Dynamic Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

OPTIMAL CUTTING STOCK PROBLEM

- □ A paper company gets an order for:
 - O 8 rolls of 2 ft paper sold at 2.50 \$ / roll
 - O 6 rolls of 2.5 ft paper sold at 3.10 \$/roll
 - O 5 rolls of 4 ft paper sold at 5.25 \$ / roll
 - O 4 rolls of 3 ft paper sold at 4.40 \$/roll
- ☐ The company only has 13 ft of paper to fill these orders; partial orders may be filled with full rolls
- □ Determine how to fill orders to maximize

☐ A *stage* is an order and since there are 4 orders we

construct a 4-stage DP

 \square A *state* in *stage* n is the remaining ft of paper left

for the order being processed at stage n and all

the remaining stages

 \square A decision in *stage* n is the amount of rolls to

produce in stage n:

$$\frac{d}{d}_{n} = \left[\frac{F_{\theta}}{L_{n}}\right]$$
, the largest integer in $\frac{F_{\theta}}{L_{n}}$

where,

 $L_n = \text{length of order } n(ft)$

 F_{θ} = length of available paper (ft)

 \Box The return function at stage n is the additional

revenues gained from producing $\frac{d_n}{d_n}$ rolls

☐ The *transition function* measures amount of paper remaining at *stage n*

$$s_{n-1} = s_n - d_n L_n$$
 $n = 2, 3, 4$
 $s_0 = s_1 - d_1 L_1$

and s_{θ} needs to be as close as possible to θ

□ Clearly,

$$\frac{d_1}{d_1} = \left\lceil \frac{s_1}{L_1} \right\rceil$$

☐ The recursion relation is

$$f_n^*(s_n) = \max \left\{ R_n(s_n, d_n) + f_{n-1}^*(s_{n-1}) \right\}$$

$$0 \le d_n \le \left\lceil \frac{s_n}{L_n} \right\rceil$$

where

$$S_{n-1} = S_n - d_n L_n$$

and

$$f_{\theta}^{*}(s_{\theta}) = \theta$$

$$f_n(s_n, d_n) = r_n d_n + f_{n-1}^*(s_n - d_n L_n), \quad n = 1, 2, 3, 4$$

☐ We assume an arbitrary order of the *stages* and

pick

stage n	1	2	3	4
length of order (ft)	2.5	4	3	2

☐ We proceed backwards from stage 1 to stage 4

and we know that

$$f_{1}^{*}(s_{1}) = \max_{0 \leq d_{1} \leq 5} \left\{ r_{1}(s_{1}, d_{1}) \right\} = \max_{0 \leq d_{1} \leq 5} \left\{ 3.10 \ d_{1} \right\}$$

$$d_{1} \leq \left[\frac{13}{2.5} \right] = 5$$

$$R_{1}$$

$$\frac{d_{1} s_{1}}{s_{1} s_{2}} = \frac{1}{5} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10} s_{11} s_{12} s_{13} s_{10} s_{12} s_{13} s_{10} s_{14} s_{12} s_{13} s_{10} s_{14} s_{12} s_{13} s_{14} s_{12} s_{14} s_{12} s_{14} s_{12} s_{14} s_{15} s_{$$

$$f_{4}^{*}(s_{4}) = \max_{0 \leq d_{4} \leq 6} \left\{ 2.5 \frac{d_{4}}{4} + f_{3}^{*}(s_{4} - 2 \frac{d_{4}}{4}) \right\}$$

$$d_{4} \leq \left[\frac{13}{2} \right] = 6$$

$$R_{4}$$

d_4	0	1	2	3	4	5	6	d_4^*	$f_4^*(s_4)$
$s_4 = 13$	18.45	17.5	18.2	17.15	16.2	16.9	15	0	18.45

☐ The maximum profits are \$18.45

DP OPTIMAL SOLUTION

☐ The *optimal* solution is obtained by retracing

$$f_1^*(s_1 = \theta) = \theta$$
 with $d_1^* = \theta \leftrightarrow \text{no rolls of } 2.5 \text{ ft}$

$$f_2^*(s_2=4) = 5.25$$
 with $d_2^* = 1 \leftrightarrow 1$ roll of 4 ft

$$f_3^*(s_3 = 13) = 18.45$$
 with $d_3^* = 3 \leftrightarrow 3$ rolls of 3 ft

$$f_4^*(s_4=13)=18.45$$
 with $d_4^*=\theta \leftrightarrow \text{no rolls of } 2ft$

SENSITIVITY CASE

- \Box Consider the case that due to an incorrect measurement, in truth, there are only 11 ft
 - available for the rolls
- \Box We note that the solution for the original 13 ft
 - covers this possibility in the stages 1, 2 and 3
 - but we need to re-compute the results of

stage 4, which we now call stage 4'

SENSITIVITY CASE: STAGE 4'

☐ The stage 4' computations become

$$\frac{d_{4'}}{4} \leq \left[\frac{11}{2}\right] = 5$$

$d_{4'}$	0	1	2	3	4	5	$d_{4'}^*$	$f_{4'}^*(s_4)$
$s_4 = 11$	15	15.7	14.65	13.7	14.4	12.5	1	15.7

☐ The *optimal* profits in this sensitivity case are \$15.7

SENSITIVITY CASE OPTIMUM

☐ The retrace of the solution path obtains

$$d_{4'}^* = 1 \iff 1 \text{ roll of } 2 \text{ ft}$$

$$d_{3'}^* = 3 \iff 3 \text{ rolls of } 3 \text{ ft}$$

$$d_{2'}^* = 0 \iff \theta \text{ rolls of } 4 \text{ ft}$$

$$d_{1'}^* = 0 \iff \theta \text{ rolls of } 2.5 \text{ ft}$$

ANOTHER SENSITIVITY CASE

☐ We consider the case with the initial 13 ft, but in addition we get the constraint that at least 1 roll of 2 ft must be produced:

$$d_{A} \geq 1$$

- Note that no additional work is needed since the computations in the first tables have all the necessary data
- ☐ This sensitivity case *optimum* profits are \$ 18.2
- \Box The *optimum* solution is:

OPTIMAL CUTTING STOCK PROBLEM

$$f_{4''}^*(s_4 = 13) = 18.2 \text{ with } d_{4''}^* = 2 \leftrightarrow 2 \text{ rolls of } 2 \text{ ft}$$

$$f_{3''}^*(s_3 = 9) = 13.2 \text{ with } d_{3''}^* = 3 \leftrightarrow 3 \text{ rolls of } 3 \text{ ft}$$

and since
$$s_2 = s_1 = 0$$
 $d_{2''}^* = 0 \leftrightarrow \theta$ rolls of 4 ft

$$d_{1''}^* = 0 \iff \theta \text{ rolls of } 2.5 \text{ ft}$$

☐ The additional constraint reduces the *optimum*

from \$ 18.45 to \$18.2 and so it costs \$.25

INVENTORY CONTROL PROBLEM

☐ This problem is concerned with the development

of an optimal ordering policy for a retailer

The sales of a seasonal item has the demands

month	Oct	Nov	Dec	Jan	Feb	Mar
demand	40	20	30	40	30	20

INVENTORY CONTROL PROBLEM

☐ All units sold are purchased from a vendor at 4

\$/unit; units are sold in lots of 10, 20, 30, 40 or 50

with the corresponding discount

lot size	10	20	30	40	50
discount %	4	5	10	20	25

INVENTORY CONTROL PROBLEM

- ☐ There are additional ordering costs: each order incurs fixed costs of \$ 2 and \$ 8 for shipping, handling and insurance
- □ The storage limitations of the retailer require that no more than 40 units be in inventory at the end of the month and the storage charges are 0.2 \$/unit; there is θ inventory at the beginning and at the end of the period under consideration
- Underlying assumption: demand occurs at a constant rate throughout each month

 \Box We formulate the problem as a DP and use a

backward process for solution

☐ Each *stage* corresponds to a month

month	Oct	Nov	Dec	Jan	Feb	Mar
stage n	6	5	4	3	2	1

 \square R is the contribution to the total cost of the ordering

policy from the stage n decision, n = 1, 2, ..., 6

 \square The state variable s_n in stage n is defined as the

amount of inventory that is stored from the

previous month, taking into account that n

additional months remain in the planning period

– the month corresponding to stage n plus the

months in the stages n-1, n-2, ..., 1

 \square The decision variable $\frac{d}{n}$ in stage n is the amount

of units ordered to satisfy the n remaining months'

demands
$$D_n$$
 and D_i , $i = n-1, n-2, ..., 2, 1$

☐ The transition function is defined by

$$s_{n-1} = s_n + d_n - D_n$$
 $n = 1, 2, ..., 6$
 $s_0 = 0$ $s_6 = 0$ demand in month n

 \square The *return function* in the *stage* n is given by

$$r_{1}(s_{1},d_{1}) = \phi(d_{n}) + h_{n}(s_{n} + d_{n} - D_{n})$$

$$ordering \qquad 0.2(s_{n} + d_{n} - D_{n})$$

$$costs \qquad storage costs$$

with

$$d_n = 0, 10, 20, 30, 40 \text{ or } 50$$

$$\phi(d_n) = \underbrace{10}_{fixed} + 4[1 - \rho(d_n)] d_n \text{ for } d_n = 10, 20, 30, 40, 50$$

$$fixed \qquad discount$$

$$costs \qquad factor$$

$$\phi(d_n) = \theta$$
 for $d_n = \theta$

d_{n}	0	10	20	30	40	50
$\phi(d_n)$	0	48	86	118	138	160

□ In the *DP* approach, at each *stage* n, we minimize the costs for the order in the stage n, n - 1, ..., 1

$$f_n^*(s_n) = \min_{d_n} \left\{ \phi(d_n) + h_n \left[s_n + d_n - D_n \right] + f_{n-1}^*(s_{n-1}) \right\}$$
 $n = 1, ..., 6$

$$f(s_0) = \theta$$
 and so $f_0^*(s_0) = \theta$

$$\begin{vmatrix}
s_0 &= 0 \\
D_1 &= 20
\end{vmatrix} \Rightarrow s_1 = 20,10 \text{ or } 0 \Rightarrow d_1^* = 0,10 \text{ or } 20$$

$$f_1^*(s_1) = \min_{d_1} \{\phi(d_1) + 0\} = \phi(d_1^*)$$

<i>s</i> ₁	20	10	0
d_{1}^{*}	0	10	20
$f_1^*(s_1)$	0	48	86

$$s_{1} = s_{2} + d_{2} - 30 \text{ since } D_{2} = 30$$

$$f_{2}^{*}(s_{2}) = \min \left\{ \phi(d_{2}) + 0.2 \left[s_{2} + d_{2} - 30 \right] + f_{1}^{*}(s_{1}) \right\}$$

C			d_{2}^{*}	$f_2^*(s_2)$				
S_2	0	10	20	30	40	50	u_{2}	$J_{2}(\mathbf{S}_{2})$
0				204	188	164	50	164
10			172	168	142		40	142
20		134	136	122			30	122
30	86	98	90				0	86
40	50	52					0	50

$$s_{2} = s_{3} + d_{3} - 40 \text{ since } D_{3} = 40$$

$$f_{3}^{*}(s_{3}) = \min_{d_{3}} \left\{ \phi(d_{3}) + 0.2 \left[\underbrace{s_{3} + d_{3} - 40}_{s_{2}} \right] + f_{2}^{*}(s_{2}) \right\}$$

C			d	3			*	$f_3^*(s_3)$
S ₃	0	10	20	30	40	50	d_{3}^{*}	
0					302	304	40	302
10				282	282	286	30, 40	282
20			250	262	264	252	20	250
30		212	230	244	230	218	10	212
40	164	192	212	210	196		0	164

$$s_3 = s_4 + d_4 - 30$$
 since $D_4 = 30$

$$f_{4}^{*}(s_{4}) = \min_{d_{4}} \left\{ \phi(d_{4}) + 0.2 \left[\underbrace{s_{4} + d_{4} - 30}_{s_{3}} \right] + f_{3}^{*}(s_{3}) \right\}$$

C			d	4			d^*	$f_{4}^{*}(s_{4})$
S_4	0	10	20	30	40	50	4	J 4 (~ 4)
0				420	422	414	50	414
10			388	402	392	384	50	384
20		350	370	372	362	332	50	332
30	302	332	340	342	310		0	302
40	284	302	310	290			0	284

$$s_4 = s_5 + d_5 - 20$$
 since $D_5 = 20$

$$f_{5}^{*}(s_{5}) = \min_{d_{5}} \left\{ \phi(d_{5}) + 0.2 \left[\underbrace{s_{5} + d_{5} - 20}_{S_{4}} \right] + f_{5}^{*}(s_{5}) \right\}$$

C			d		d_5^*	$f_{5}^{*}(s_{5})$		
S ₅	0	10	20	30	40	50	<i>u</i> 5	$J_{5}(\mathbf{S}_{5})$
0			500	504	474	468	50	468
10		462	472	454	446	452	40	446
20	414	434	422	426	430		0	414
30	386	384	394	410			10	384
40	336	356	378				0	336

$$D_6 = 40$$
 and $s_6 = 0$

$$s_5 = s_6 + d_6 - 40 = d_6 - 40$$

$$f_{6}^{*}(s_{6}) = \min_{d_{6}} \left\{ \phi(d_{6}) + 0.2 \left[\underbrace{s_{6} + d_{6} - 40}_{5} \right] + f_{5}^{*}(s_{5}) \right\}$$

d_6	0	10	20	30	40	50	d_{6}^{*}	$f_6^*(s_6)$
$f_6(s_6)$					606	608	40	606

$$d_{6}^{*} = 40 \Rightarrow d_{5}^{*} = 50 \Rightarrow d_{4}^{*} = 0 \Rightarrow d_{3}^{*} = 40 \Rightarrow d_{2}^{*} = 50 \Rightarrow d_{1}^{*} = 0$$

OPTIMAL SOLUTION

$$d_6^* = 40$$
 which implies $s_5 = \theta$ and costs 606
 $d_5^* = 50$ which implies $s_4 = 30$ and costs 468
 $d_4^* = \theta$ which implies $s_3 = \theta$ and costs 302
 $d_3^* = 40$ which implies $s_2 = \theta$ and costs 302
 $d_2^* = 50$ which implies $s_1 = 20$ and costs 164
 $d_1^* = \theta$ with costs θ

OPTIMAL SOLUTION

OPTIMAL SOLUTION

☐ The *optimal* trajectory is

$$S_0 = 0 \rightarrow S_1 = 20 \rightarrow S_2 = 0 \rightarrow S_3 = 0 \rightarrow S_4 = 30 \rightarrow S_5 = 0$$

□ The total costs for the sequence of orders are given by

$$0 + 164 + 138 + 0 + 166 + 138 = 606$$

MUTUAL FUND INVESTMENT STRATEGIES

- ☐ We consider a 5—year investment of
 - o 10 k\$ invested in year 1
 - o 1 k\$ invested in each year 2, 3, 4 and 5 into
 - 2 mutual funds with different yields for both
 - the short-term (1 year) and the long-term (up
 - to 5 years)
- ☐ The decision on the allocation of investment in
 - each fund is made at the beginning of each year

MUTUAL FUND INVESTMENT STRATEGIES

- We operate under the following protocol:
 - each fund returns short–term dividends and long–term dividends
 - once invested, the money cannot be
 withdrawn until the end of the 5 year period
 - all short-term gains may either be reinvested in one of the two funds, or withdrawn; in the latter case, the withdrawn funds earn no further interest
- □ Our objective is to maximize the total returns at the end of 5 years

MUTUAL FUND INVESTMENT STRATEGIES

- ☐ The earnings on the investment are
 - \bigcirc *LTD* : the long-term dividend specified as % / year return on the accumulated capital
 - O STD: the short-term interest dividend returned as cash to the investor at the end of the period; cash may be invested in either fund and any money not invested earns no return

MUTUAL FUND INVESTMENT PARAMETERS

fund	STD rate i _n for year n					LTD
	1	2	3	4	5	rate I
$oldsymbol{A}$	0.02	0.0225	0.0225	0.025	0.025	0.04
В	0.06	0.0475	0.05	0.04	0.04	0.03

DP SOLUTION APPROACH

- \square We use backwards DP to solve the problem
- ☐ The *stages* are the 5 investment periods

stage
$$n \triangleq year 6 - n$$
 $n = 1, 2, 3, 4, 5$

DP SOLUTION METHOD

- \square For stage n, the state s_n is the capital available for investment in the year 6-n
- ☐ The decision d_n is the amount of capital invested in fund A in year 6-n and so the amount of capital invested in fund B in the year 6-n is

$$S_n - d_n$$

 \square In each year, we determine the amount to invest in fund A and in fund B in order to optimize the returns at the end of year 5

DP SOLUTION METHOD

☐ The backward recursion application considers year 5

first and then each previous year in sequence

- □ Basic considerations:
 - O for each of the stages 6-n, $n=1,\ldots,5$,

 $\frac{d}{d}$ is invested in fund A with returns $\frac{d}{d}$ i A (STD)

and $(s_n - d_n)$ is invested in fund B with returns

$$(s_n - d_n)i_R(STD)$$

DP SOLUTION METHOD

O for the stage 6 - n + 1, the STDs are augmented

by \$1,000

$$s_{n-1} = d_n i_A + (s_n - d_n) i_B + 1,000$$
 $n = 2,3,4,5$

O For the stage 5, we have the initial investment

$$s_5 = 10,000$$

THE OBJECTIVE

- ☐ The objective is to maximize the total returns $max R = \sum_{n=0}^{5} r_n$ evaluated at the end of year 5
- ☐ We express *all* returns in the end of the year 5 dollars: r_n is the future value of long —term earnings in the years 1, 2, 3 and 4

$$r_n = (1 + I_A)^n \frac{d}{n} + (1 + I_B)^n (s_n - d_n) \quad n = 1, ..., 5$$

 \square But for n = 1, r_1 is the present value of all earnings in *stage* 1

$$r_1 = (1 + I_A) \frac{d}{1} + (1 + I_B) (s_1 - \frac{d}{1}) + i_A \frac{d}{1} + i_B (s_1 - \frac{d}{1})$$

\Box For stage 1

where

$$\begin{aligned} \mathbf{r}_1 &= (1 + I_A) \mathbf{d}_1 + (1 + I_B) (\mathbf{s}_1 - \mathbf{d}_1) + i_{1A} \mathbf{d}_1 + i_{1B} (\mathbf{s}_1 - \mathbf{d}_1) \\ &= \left(I_A + i_{1A} - I_B - i_{1B} \right) \mathbf{d}_1 + (1 + I_B + i_{1B}) \mathbf{s}_1 \end{aligned}$$

 \Box r_1 = earnings in *stage* 1 (associated with the stage 1 decision)

$$f_{1}^{*}(s_{1}) = \max_{d_{1}} \{r_{1}\} = \max_{d_{1}} \left\{ \frac{d_{1}(I_{A} + i_{1A} - I_{B} - i_{1B}) + \\ s_{1}(1 + I_{B} + i_{1B}) \right\}$$

$$= \max_{0 \le d_1 \le s_1} \begin{cases} d_1(0.04 + 0.025 - 0.03 - 0.04) + \\ s_1(1 + 0.03 + 0.04) \end{cases}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \max_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

$$= \min_{\substack{d \\ optimal}} \left\{ \frac{d}{1} (-0.005) + s_1 (1.07) \right\}$$

Arr = returns associated with the decision in stage 2 realized at the end of 5 years

$$= \frac{d_2}{(1 + I_A)^2} + (\frac{s_2}{-d_2})(1 + I_B)^2$$

$$= \frac{d_2}{(1 + I_A)^2} - (1 + I_B)^2 + \frac{s_2}{(1 + I_B)^2}$$

As a consequence of the decision $\frac{d}{2}$, the funds for investment in stage 1 are

$$s_1 = s_2 i_{1B} + d_2 (i_{1A} - i_{1B}) + 1,000$$

☐ We select d, to maximize

$$f_{2}^{*}(s_{2}) = \max_{d_{2}} \left\{ r_{2} + f_{1}^{*}(s_{1}) \right\}$$

$$= \max_{0 \leq d_{2} \leq s_{2}} \left\{ \frac{d_{2}(.0207) + 1.0609s_{2} +}{1.07[.04s_{2} + d_{2}(-.015) + 1,000]} \right\}$$

$$= \max_{d_{2}} \left\{ \frac{d_{2}(1.04^{2} - 1.03^{2}) + s_{2}(1.03)^{2} + f_{1}^{*}(s_{1}) \right\}$$

$$= \max_{d_{2}} \left\{ \frac{d_{2}(.0046) + 1.1037s_{2} + 1,070}{d_{2}^{*}} \right\}$$

$$d_{2}^{*} = s_{2} \quad \text{with} \quad f_{2}^{*}(s_{2}) = 1.108s_{2} + 1,070$$

 $rac{1}{2}$ returns associated with the decision d_3 realized at the end of 5 years

$$= \frac{d}{3} (1 + I_A)^3 + (s_3 - \frac{d}{3})(1 + I_B)^3$$

$$= \frac{d}{3} \left[(1 + I_A)^3 - (1 + I_B)^3 \right] + \frac{s}{3} (1 + I_B)^3$$

As a consequence of the decision d₃, the funds for investment in stage 2 are

$$s_2 = s_3 i_{3B} + d_3 (i_{3A} - i_{3B}) + 1,000$$

\Box We select d_3^* to maximize

$$f_3^*(s_3) = \max_{d_3} \left\{ r_3 + f_2^*(s_2) \right\}$$

$$= \max_{d_3} \begin{cases} \frac{d_3(1.04^3 - 1.03^3) + s_3(1.03)^3 + \\ 1.108s_2 + 1,070 \end{cases}$$

$$= \max_{0 \le d_3 \le s_3} \left\{ 2,178 + 1.1481 s_3 + .0018 d_3 \right\}$$

$$d_3^* = s_3$$
 with $f_3^*(s_3) = 1.15s_3 + 2,178$

 \Box r_4 = returns associated with the decision d_4 realized at the end of 5 years

$$= \frac{d_4}{(1 + I_A)^4} + (s_4 - \frac{d_4}{(1 + I_B)^4})^4$$

$$= \frac{d}{4} \left[(1 + I_A)^4 - (1 + I_B)^4 \right] + \frac{s}{4} (1 + I_B)^4$$

☐ The funds for investment in stage 3 depend explicitly on $\frac{d}{4}$

$$s_3 = s_4 i_{4B} + d_4 (i_{4A} - i_{4B}) + 1,000$$

 \square We select d_4^* to maximize

$$f_4^*(s_4) = \max_{d_4} \{r_4 + f_3^*(s_3)\}$$

$$= \max_{d_4} \left\{ \frac{d_4}{(1.04^4 - 1.03^4) + s_4}{(1.03)^4 + 1.15s_3 + 2,178} \right\}$$

$$= \max_{0 \le d_4 \le s_4} \left\{ 3328 + 1.1772 s_4 + .0156 d_4 \right\}$$

$$d_4^* = s_4$$
 with $f_4^*(s_4) = 1.193 s_4 + 3,328$

 \Box r_5 = returns associated with the decision $\frac{d}{5}$

realized at the end of 5 years

$$= \frac{d}{5} (1 + I_A)^5 + (s_5 - \frac{d}{5})(1 + I_B)^5$$

$$= d_{5} \left[1.04^{5} - 1.03^{5} \right] + s_{5} (1.03)^{5}$$

☐ The funds available in stage 5 are

$$s_5 = 10,000$$

Therefore, the funds available for investment in stage 4 are

$$S_4 = S_5 i_{5B} + d_5 (i_{5A} - i_{5B}) + 1,000$$

$$= 10,000 i_{5B} + d_5 (i_{5A} - i_{5B}) + 1,000$$

 \square We select $\frac{d}{5}$ to maximize

$$f_{5}^{*}(s_{5}) = \max_{0 \le d_{5} \le s_{4}} \left\{ \frac{10,000(1.03)^{5} + d_{5}(1.04^{5} - 1.03^{5}) + f_{4}^{*}(s_{4})}{11,593} \right\}$$

$$1,000 + 600 + \frac{d}{5}(-.04)$$
 1.193 + 3,328

$$= \max_{0 \le d_5 \le S_5} \left\{ 16,830 + \frac{d}{5} \left(0.0574 - 0.048 \right) \right\}$$

$$= 16,830 + 0.097(10,000)$$

$$\frac{d}{s}^* = 10,000$$
 with $f_5^*(s_5) = 16,927$

OPTIMAL SOLUTION

optimal return at end of 5 years is 16,927 using the following strategy

beginning of	investment in			
year	fund A	fund B		
1	10,000	0		
2	<i>STD returns</i> + 1,000	0		
3	<i>STD returns</i> + 1,000	0		
4	<i>STD returns</i> + 1,000	0		
5	0	<i>STD returns</i> + 1,000		