ECE 307 - Techniques for Engineering Decisions

Lecture 8b. Dynamic Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

OPTIMAL CUTTING STOCK PROBLEM

\square A paper company gets an order for:
O 8 rolls of 2 ft paper sold at $2.50 \$ /$ roll
O 6 rolls of 2.5 ft paper sold at $3.10 \$ /$ roll
O 5 rolls of $4 \mathbf{f t}$ paper sold at $5.25 \$ /$ roll
O 4 rolls of $3 \mathbf{f t}$ paper sold at $4.40 \$ /$ roll
The company only has 13 ft of paper to fill these orders; partial orders may be filled with full rolls
\square Determine how to fill orders to maximize

DP SOLUTION APPROACH

\square A stage is an order and since there are 4 orders we
construct a 4-stage DP

DP SOLUTION APPROACH

\square A state in stage n is the remaining ft of paper left
for the order being processed at stage n and all
the remaining stages
\square A decision in stage n is the amount of rolls to produce in stage n :

DP SOLUTION APPROACH

$$
d_{n}=\left[\frac{F_{0}}{L_{n}}\right] \text {, the largest integer in } \frac{F_{0}}{L_{n}}
$$

where,

$$
\begin{aligned}
& L_{n}=\text { length of order } n(f t) \\
& F_{0}=\text { length of available paper }(f t)
\end{aligned}
$$

The return function at stage \boldsymbol{n} is the additional revenues gained from producing d_{n} rolls

DP SOLUTION APPROACH

\square The transition function measures amount of paper
remaining at stage n

$$
\begin{aligned}
s_{n-1} & =s_{n}-d_{n} L_{n} \quad n=2,3,4 \\
s_{0} & =s_{1}-d_{1} L_{1}
\end{aligned}
$$

and s_{0} needs to be as close as possible to 0
\square Clearly,

$$
d_{1}=\left[\frac{s_{1}}{L_{1}}\right]
$$

DP SOLUTION APPROACH

The recursion relation is

$$
\begin{aligned}
& f_{n}^{*}\left(s_{n}\right)= \max \quad\left\{R_{n}\left(s_{n}, d_{n}\right)+f_{n-1}^{*}\left(s_{n-1}\right)\right\} \\
& 0 \leq d_{n} \leq\left[\frac{s_{n}}{L_{n}}\right]
\end{aligned}
$$

where

$$
s_{n-1}=s_{n}-d_{n} L_{n}
$$

and

$$
\begin{aligned}
& f_{0}^{*}\left(s_{0}\right)=0 \\
& f_{n}\left(s_{n}, d_{n}\right)=r_{n} d_{n}+f_{n-1}^{*}\left(s_{n}-d_{n} L_{n}\right), \quad n=1,2,3,4
\end{aligned}
$$

DP SOLUTION APPROACH

\square We assume an arbitrary order of the stages and
pick

stage n	1	2	3	4
length of order (ft)	2.5	4	3	2

We proceed backwards from stage 1 to stage 4
and we know that

DP SOLUTION: STAGE 1

$$
\begin{gathered}
f_{1}^{*}\left(s_{1}\right)=\max _{0 \leq d_{1} \leq 5}\left\{r_{1}\left(s_{1}, d_{1}\right)\right\}=\max _{0 \leq d_{1} \leq 5}\left\{\mathbf{3 . 1 0} d_{1}\right\} \\
d_{1} \leq\left[\frac{\mathbf{1 3}}{\mathbf{2 . 5}}\right]=5
\end{gathered}
$$

$\boldsymbol{d}_{\mathbf{1}} \boldsymbol{S}_{\mathbf{1}}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-	-	-	3.10	3.10									
2	-	-	-	-	-	6.20	6.20							
3	-	-	-	-	-	-	-	-	9.30	9.30				
4	-	-	-	-	-	-	-	-	-	-	12.40	12.40		
5	-	-	-	-	-	-	-	-	-	-	-	-	-	15.50
$\boldsymbol{f}_{\mathbf{1}}^{*}\left(\boldsymbol{s}_{\mathbf{1}}\right)$	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50
$\boldsymbol{d}_{\mathbf{1}}^{*}$	0	0	0	1	1	2	2	2	3	3	4	4	4	5

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DP SOLUTION: STAGE 2

$$
\begin{gathered}
f_{2}^{* *}\left(s_{2}\right)=\max _{0 \leq d_{2} \leq 3}\left\{5.25 d_{2}+f_{1}^{* *}\left(s_{2}-4 d_{2}\right)\right\} \\
d_{2} \leq\left[\frac{13}{4}\right]=3
\end{gathered}
$$

\boldsymbol{d}_{2}	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50
1	-	-	-	-	5.25	5.25	5.25	8.35	8.35	11.45	11.45	11.45	14.55	14.55
2	-	-	-	-	-	-	-	-	10.50	10.50	10.50	13.60	13.60	16.70
3	-	-	-	-	-	-	-	-	-	-	-	-	15.75	15.75
$\boldsymbol{f}_{2}^{*}\left(\boldsymbol{s}_{2}\right)$	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70
\boldsymbol{d}_{2}^{*}	0	0	0	0	1	0	0	1	2	1	0	2	3	2

DP SOLUTION: STAGE 3

$$
\begin{gathered}
f_{3}^{*}\left(s_{3}\right)=\max _{0 \leq d_{3} \leq 4}\left\{4.40 d_{3}+f_{2}^{*}\left(s_{3}-3 d_{3}\right)\right\} \\
d_{3} \leq\left[\frac{13}{3}\right]=4 R_{3}
\end{gathered}
$$

$d_{3} S_{3}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70
1	-	-	-	4.40	4.40	4.40	7.50	9.65	10.60	10.60	12.75	14.90	15.85	16.80
2	-	-	-	-	-	-	8.80	8.80	8.80	11.90	14.05	15.00	15.00	17.15
3	-	-	-	-	-	-	-	-	-	13.20	13.20	13.20	16.30	18.45
4	-	-	-	-	-	-	-	-	-	-	-	-	17.60	17.60
$f_{3}^{*}\left(s_{3}\right)$	0	0	0	4.40	5.25	6.20	8.80	9.65	10.60	13.20	14.05	15.00	17.60	18.45
d_{3}^{*}	0	0	0	1	0	0	2	1	1	3	2	2	4	3

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DP SOLUTION: STAGE 4

$$
\begin{array}{r}
f_{4}^{*}\left(s_{4}\right)=\max _{0 \leq d_{4} \leq 6}\left\{2.5 d_{4}+f_{3}^{*}\left(s_{4}-2 d_{4}\right)\right\} \\
d_{4} \leq\left[\frac{13}{2}\right]=6 R_{R_{4}}
\end{array}
$$

d_{4}	0	1	2	3	4	5	6	d_{4}^{*}	$f_{4}^{*}\left(s_{4}\right)$
$s_{4}=13$	18.45	17.5	18.2	17.15	16.2	16.9	15	0	18.45

\square The maximum profits are $\mathbf{\$ 1 8 . 4 5}$

DP OPTIMAL SOLUTION

The optimal solution is obtained by retracing
$f_{1}^{*}\left(s_{1}=0\right)=0 \quad$ with $d_{1}^{*}=0 \quad \leftrightarrow$ no rolls of $2.5 f t$
$f_{2}^{*}\left(s_{2}=4\right)=5.25$ with $d_{2}^{*}=1 \leftrightarrow 1$ roll of $4 f t$
$f_{3}^{*}\left(s_{3}=13\right)=18.45$ with $d_{3}^{*}=3 \leftrightarrow 3$ rolls of 3 ft
$f_{4}^{*}\left(s_{4}=13\right)=18.45$ with $d_{4}^{*}=0 \quad \leftrightarrow$ no rolls of $2 f t$

SENSITIVITY CASE

\square Consider the case that due to an incorrect

 measurement, in truth, there are only 11 ft available for the rolls\square We note that the solution for the original 13 ft covers this possibility in the stages 1, 2 and 3 but we need to re-compute the results of stage 4 , which we now call stage $\mathbf{4}^{\prime}$

SENSITIVITY CASE : STAGE4́

The stage 4^{\prime} computations become

$$
d_{4^{\prime}} \leq\left[\frac{11}{2}\right]=5
$$

$d_{4^{\prime}}$	0	1	2	3	4	5	$d_{4^{\prime}}^{*}$	$f_{4^{\prime}}^{*}\left(s_{4}\right)$
$s_{4}=11$	15	15.7	14.65	13.7	14.4	12.5	1	15.7

\square The optimal profits in this sensitivity case are $\mathbf{\$ 1 5 . 7}$

SENSITIVITY CASE OPTIMUM

The retrace of the solution path obtains

$$
\begin{array}{lll}
d_{4^{\prime}}^{*}=1 & \leftrightarrow & \mathbf{1} \text { roll of } \mathbf{2 ~ f t} \\
d_{3^{\prime}}^{*}=3 & \leftrightarrow & \mathbf{3} \text { rolls of } \mathbf{3} \boldsymbol{f t} \\
d_{2^{\prime}}^{*}=0 \quad \leftrightarrow \quad 0 \text { rolls of } \mathbf{f t} \\
d_{1^{\prime}}^{*}=0 \quad \leftrightarrow \quad 0 \text { rolls of } \mathbf{2 . 5} \mathbf{f t}
\end{array}
$$

ANOTHER SENSITIVITY CASE

\square We consider the case with the initial 13 ft , but in addition we get the constraint that at least 1 roll of

2 ft must be produced:

$$
d_{4} \geq 1
$$

\square Note that no additional work is needed since the computations in the first tables have all the necessary data
\square This sensitivity case optimum profits are \$ 18.2
\square The optimum solution is :

OPTIMAL CUTTING STOCK PROBLEM

$f_{4^{\prime \prime}}^{*}\left(s_{4}=13\right)=18.2$ with $d_{4^{\prime \prime}}^{*}=2 \leftrightarrow 2$ rolls of $2 f t$
$f_{3^{\prime \prime}}^{*}\left(s_{3}=9\right)=13.2$ with $d_{3^{\prime \prime}}^{*}=3 \leftrightarrow 3$ rolls of 3 ft
and since $s_{2}=s_{1}=0 \quad d_{2^{\prime \prime}}^{*}=0 \quad \leftrightarrow 0$ rolls of 4 ft

$$
d_{1^{\prime \prime}}^{*}=0 \leftrightarrow 0 \text { rolls of } 2.5 \mathrm{ft}
$$

\square The additional constraint reduces the optimum
from $\$ 18.45$ to $\$ 18.2$ and so it costs $\$.25$

INVENTORY CONTROL PROBLEM

\square This problem is concerned with the development
of an optimal ordering policy for a retailer
\square The sales of a seasonal item has the demands

month	Oct	Nov	Dec	Jan	Feb	Mar
demand	40	20	30	40	30	20

INVENTORY CONTROL PROBLEM

\square All units sold are purchased from a vendor at 4
$\$ / u n i t$; units are sold in lots of $\mathbf{1 0 , 2 0 , 3 0 , 4 0}$ or 50
with the corresponding discount

lot size	10	20	30	40	50
discount $\%$	4	5	10	20	25

INVENTORY CONTROL PROBLEM

\square There are additional ordering costs: each order incurs fixed costs of \$ 2 and \$ 8 for shipping, handling and insurance
\square The storage limitations of the retailer require that no more than 40 units be in inventory at the end of the month and the storage charges are 0.2 \$/unit; there is 0 inventory at the beginning and at the end of the period under consideration
\square Underlying assumption: demand occurs at a constant rate throughout each month

DP SOLUTION APPROACH

We formulate the problem as a DP and use a backward process for solution

Each stage corresponds to a month

month	Oct	Nov	Dec	Jan	Feb	Mar
stage n	6	5	4	3	2	1

DP SOLUTION APPROACH

\boldsymbol{R}_{n} is the contribution to the total cost of the ordering policy from the stage n decision, $n=1,2, \ldots, 6$

DP SOLUTION APPROACH

The state variable s_{n} in stage n is defined as the amount of inventory that is stored from the
previous month, taking into account that n
additional months remain in the planning period

- the month corresponding to stage n plus the
months in the stages $n-1, n-2, \ldots, 1$

DP SOLUTION APPROACH

\square The decision variable d_{n} in stage n is the amount
of units ordered to satisfy the n remaining months'
demands D_{n} and $D_{i}, i=n-1, n-2, \ldots, 2,1$
\square The transition function is defined by

$$
\begin{aligned}
& s_{n-1}=s_{n}+d_{n}-D_{n} \mathrm{n}=1,2, \ldots, 6 \\
& s_{0}=0 \quad s_{6}=0 \quad \text { demand in month } n
\end{aligned}
$$

DP SOLUTION APPROACH

\square The return function in the stage n is given by

$$
r_{1}\left(s_{1}, d_{1}\right)=\underbrace{\underset{\begin{array}{c}
\text { ordering } \\
\text { costs }
\end{array}}{\begin{array}{c}
0.2\left(s_{n}+d_{n}-D_{n}\right) \\
\text { storage costs }
\end{array}}}_{\substack{\phi\left(d_{n}\right)}}
$$

with

$$
\begin{aligned}
d_{n} & =0,10,20,30,40 \text { or } 50 \\
\phi\left(d_{n}\right) & =\underbrace{10}_{\begin{array}{c}
\text { fixed } \\
\text { costs }
\end{array}}+4[1-\underbrace{\rho\left(d_{n}\right)}_{\begin{array}{c}
\text { discount } \\
\text { factor }
\end{array}}] d_{n} \text { for } d_{n}=10,20,30,40,50
\end{aligned}
$$

$$
\phi\left(d_{n}\right)=0 \text { for } d_{n}=0
$$

DP SOLUTION APPROACH

d_{n}	0	10	20	30	40	50
$\phi\left(d_{n}\right)$	0	48	86	118	138	160

In the DP approach, at each stage n, we minimize the costs for the order in the stage $n, n-1, \ldots, 1$
$f_{n}^{*}\left(s_{n}\right)=\min _{d_{n}}\left\{\phi\left(d_{n}\right)+h_{n}\left[s_{n}+d_{n}-D_{n}\right]+f_{n-1}^{*}\left(s_{n-1}\right)\right\}$ $n=1, \ldots, 6$
$f\left(s_{0}\right)=0$ and so $f_{0}^{*}\left(s_{0}\right)=0$

DP SOLUTION: STAGE 1

$$
\begin{gathered}
\left.\begin{array}{c}
s_{0}=0 \\
D_{1}=20
\end{array}\right\} \Rightarrow s_{1}=20,10 \text { or } 0 \Rightarrow d_{1}^{*}=0,10 \text { or } 20 \\
f_{1}^{*}\left(s_{1}\right)=\min _{d_{1}}\left\{\phi\left(d_{1}\right)+0\right\}=\phi\left(d_{1}^{*}\right)
\end{gathered}
$$

s_{1}	20	10	0
d_{1}^{*}	0	10	20
$f_{1}^{*}\left(s_{1}\right)$	0	48	86

DP SOLUTION: STAGE 2

$$
\begin{aligned}
s_{1} & =s_{2}+d_{2}-30 \text { since } D_{2}=30 \\
f_{2}^{*}\left(s_{2}\right) & =\min _{d_{2}}\left\{\phi\left(d_{2}\right)+0.2\left[s_{2}+d_{2}-30\right]+f_{1}^{*}\left(s_{1}\right)\right\}
\end{aligned}
$$

S_{2}	d_{2}						d_{2}^{*}	$f_{2}^{*}\left(s_{2}\right)$
	0	10	20	30	40	50		
0				204	188	164	50	164
10			172	168	142		40	142
20		134	136	122			30	122
30	86	98	90				0	86
40	50	52					0	50

DP SOLUTION: STAGE 3

DP SOLUTION: STAGE 4

$$
\begin{gathered}
s_{3}=s_{4}+d_{4}-30 \text { since } D_{4}=30 \\
f_{4}^{*}\left(s_{4}\right)=\min _{d_{4}}\{\phi\left(d_{4}\right)+0.2[\underbrace{s_{4}+d_{4}-30}_{s_{3}}]+f_{3}^{*}\left(s_{3}\right)\}
\end{gathered}
$$

s_{4}	d_{4}							d_{4}^{*}
	$f_{4}^{*}\left(s_{4}\right)$							
0		10	20	30	40	50		
10			388	402	392	384	50	384
20		350	370	372	362	332	50	332
30	302	332	340	342	310		0	302
40	284	302	310	290			0	284

DP SOLUTION: STAGE 5

$$
\begin{aligned}
s_{4} & =s_{5}+d_{5}-20 \text { since } D_{5}=20 \\
f_{5}^{*}\left(s_{5}\right) & =\min _{d_{5}}\{\phi\left(d_{5}\right)+0.2[\underbrace{s_{5}+d_{5}-20}_{s_{4}}]+f_{5}^{*}\left(s_{5}\right)\}
\end{aligned}
$$

s_{5}	d_{5}							d_{5}^{*}
	0	10	20	30	40	50		
0			500	504	474	468	50	468
10		462	472	454	446	452	40	446
20	414	434	422	426	430		0	414
30	386	384	394	410			10	384
40	336	356	378				0	336

DP SOLUTION: STAGE 6

$$
\begin{aligned}
D_{6} & =40 \text { and } s_{6}=0 \\
s_{5} & =s_{6}+d_{6}-40=d_{6}-40 \\
f_{6}^{*}\left(s_{6}\right) & =\min _{d_{6}}\{\phi\left(d_{6}\right)+0.2[\underbrace{s_{6}+d_{6}-40}_{S_{5}}]+f_{5}^{*}\left(s_{5}\right)\}
\end{aligned}
$$

d_{6}	0	10	20	30	40	50	d_{6}^{*}	$f_{6}^{*}\left(s_{6}\right)$
$f_{6}\left(s_{6}\right)$					606	608	40	606

$$
d_{6}^{*}=40 \Rightarrow d_{5}^{*}=50 \Rightarrow d_{4}^{*}=0 \Rightarrow d_{3}^{*}=40 \Rightarrow d_{2}^{*}=50 \Rightarrow d_{1}^{*}=0
$$

OPTIMAL SOLUTION

$d_{6}^{*}=40$ which implies $s_{5}=0$ and costs 606
$d_{5}^{*}=50$ which implies $s_{4}=30$ and costs 468
$d_{4}^{*}=0$ which implies $s_{3}=0$ and costs 302
$d_{3}^{*}=40$ which implies $s_{2}=0$ and costs 302
$d_{2}^{*}=50$ which implies $s_{1}=20$ and costs 164
$d_{1}^{*}=0 \quad$ with costs 0

OPTIMAL SOLUTION

$d_{6}^{*}=40 \quad d_{5}^{*}=50 \quad d_{4}^{*}=0 \quad d_{3}^{*}=40 \quad d_{2}^{*}=50 \quad d_{1}^{*}=0$

$$
s_{6}=0 \downarrow s_{5}=0 \quad s_{4}=30 \quad s_{3}=0 \quad s_{2}=0 \quad s_{1}=20 s_{0}=0
$$

OPTIMAL SOLUTION

The optimal trajectory is
$S_{0}=0 \rightarrow S_{1}=20 \rightarrow S_{2}=0 \rightarrow S_{3}=0 \rightarrow S_{4}=30 \rightarrow S_{5}=0$
\square The total costs for the sequence of orders are given by

$$
0+164+138+0+166+138=606
$$

MUTUAL FUND INVESTMENT STRATEGIES

\square We consider a 5 -year investment of
o $10 \boldsymbol{k S}$ invested in year 1
o $1 \mathbf{k \$}$ invested in each year $2,3,4$ and 5 into
2 mutual funds with different yields for both
the short-term (1 year) and the long-term (up
to 5 years)
The decision on the allocation of investment in each fund is made at the beginning of each year

MUTUAL FUND INVESTMENT STRATEGIES

\square We operate under the following protocol:
O each fund returns short-term dividends and long-term dividends
O once invested, the money cannot be withdrawn until the end of the 5 - year period
O all short-term gains may either be reinvested in one of the two funds, or withdrawn; in the latter case, the withdrawn funds earn no further interest
Our objective is to maximize the total returns at the end of 5 years

MUTUAL FUND INVESTMENT STRATEGIES

\square The earnings on the investment are
O LTD : the long-term dividend specified as \% /
year return on the accumulated capital
O STD : the short-term interest dividend returned as cash to the investor at the end of the period; cash may be invested in either fund and any money not invested earns no return

MUTUAL FUND INVESTMENT PARAMETERS

fund	STD rate i_{n} for year n					
	1	2	3	4	5	
A	0.02	0.0225	0.0225	0.025	0.025	0.04
B	0.06	0.0475	0.05	0.04	0.04	0.03

DP SOLUTION APPROACH

\square We use backwards DP to solve the problem
\square The stages are the 5 investment periods
stage $n \triangleq$ year $6-n \quad n=1,2,3,4,5$

DP SOLUTION METHOD

\square For stage n, the state s_{n} is the capital available for investment in the year 6-n
\square The decision d_{n} is the amount of capital invested in fund A in year 6 - n and so the amount of capital invested in fund B in the year $6-n$ is $s_{n}-d_{n}$
\square In each year, we determine the amount to invest in fund A and in fund B in order to optimize the returns at the end of year 5

DP SOLUTION METHOD

The backward recursion application considers year 5
first and then each previous year in sequence
\square Basic considerations:

O for each of the stages $6-n, n=1, \ldots, 5$, d_{n} is invested in fund A with returns $d_{n} i_{A}(S T D)$
and $\left(s_{n}-d_{n}\right)$ is invested in fund B with returns
$\left(s_{n}-d_{n}\right) i_{B}(S T D)$
ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DP SOLUTION METHOD

O for the stage $6-n+1$, the STDs are augmented
by $\mathbf{\$ 1 , 0 0 0}$

$$
s_{n-1}=d_{n} i_{A}+\left(s_{n}-d_{n}\right) i_{B}+1,000 \quad n=2,3,4,5
$$

O For the stage 5, we have the initial investment

$$
s_{5}=10,000
$$

THE OBJECTIVE

The objective is to maximize the total returns $\max R=\sum_{n=1}^{5} r_{n}$ evaluated at the end of year 5
\square We express all returns in the end of the year 5 dollars: r_{n} is the future value of long -term earnings in the years $1,2,3$ and 4

$$
r_{n}=\left(1+I_{A}\right)^{n} d_{n}+\left(1+I_{B}\right)^{n}\left(s_{n}-d_{n}\right) \quad n=1, \ldots, 5
$$

\square But for $n=1, r_{1}$ is the present value of all earnings in stage 1

DP SOLUTION: STAGE 1

\square For stage 1

where

$$
\begin{aligned}
r_{1} & =\left(1+I_{A}\right) d_{1}+\left(1+I_{B}\right)\left(s_{1}-d_{1}\right)+i_{1 A} d_{1}+i_{1 B}\left(s_{1}-d_{1}\right) \\
& =\left(I_{A}+i_{1 A}-I_{B}-i_{1 B}\right) d_{1}+\left(1+I_{B}+i_{1 B}\right) s_{1}
\end{aligned}
$$

DP SOLUTION: STAGE 1

$\square \quad r_{1}=$ earnings in stage 1 (associated with the stage 1 decision)

$$
f_{1}^{*}\left(s_{1}\right)=\max _{d_{1}}\left\{r_{1}\right\}=\max _{d_{1}}\left\{\begin{array}{l}
d_{1}\left(I_{A}+i_{1 A}-I_{B}-i_{1 B}\right)+ \\
s_{1}\left(1+I_{B}+i_{1 B}\right)
\end{array}\right\}
$$

$$
=\max _{0 \leq d_{1} \leq s_{1}}\left\{\begin{array}{l}
d_{1}(0.04+0.025-0.03-0.04)+ \\
s_{1}(1+0.03+0.04)
\end{array}\right\}
$$

$$
=\max _{d_{1}}\left\{d_{1}(-0.005)+s_{1}(1.07)\right\}
$$

maximum
optimal

DP SOLUTION: STAGE 2

- $r_{2}=$ returns associated with the decision in stage 2 realized at the end of 5 years

$$
\begin{aligned}
& =d_{2}\left(1+I_{A}\right)^{2}+\left(s_{2}-d_{2}\right)\left(1+I_{B}\right)^{2} \\
& =d_{2}\left[\left(1+I_{A}\right)^{2}-\left(1+I_{B}\right)^{2}\right]+s_{2}\left(1+I_{B}\right)^{2}
\end{aligned}
$$

- As a consequence of the decision d_{2}, the funds for investment in stage 1 are

$$
s_{1}=s_{2} i_{1 B}+d_{2}\left(i_{1 A}-i_{1 B}\right)+1,000
$$

DP SOLUTION: STAGE 2

\square We select d_{2}^{*} to maximize

$$
f_{2}^{*}\left(s_{2}\right)=\max _{d_{2}}\left\{r_{2}+f_{1}^{*}\left(s_{1}\right)\right\}
$$

$$
=\max _{0 \leq d_{2} \leq s_{2}}\left\{\begin{array}{l}
d_{2}(.0207)+1.0609 s_{2}+ \\
1.07\left[.04 s_{2}+d_{2}(-.015)+1,000\right]
\end{array}\right\}
$$

$$
=\max _{d_{2}}\left\{d_{2}\left(1.04^{2}-1.03^{2}\right)+s_{2}(1.03)^{2}+f_{1}^{*}\left(s_{1}\right)\right\}
$$

$$
=\max _{d_{2}}\left\{d_{2}(.0046)+1.1037 s_{2}+1,070\right\}
$$

$$
d_{2}^{*}=s_{2} \quad \text { with } \quad f_{2}^{*}\left(s_{2}\right)=1.108 s_{2}+1,070
$$

DP SOLUTION: STAGE 3

$r_{3}=$ returns associated with the decision d_{3} realized at the end of 5 years

$$
\begin{aligned}
& =d_{3}\left(1+I_{A}\right)^{3}+\left(s_{3}-d_{3}\right)\left(1+I_{B}\right)^{3} \\
& =d_{3}\left[\left(1+I_{A}\right)^{3}-\left(1+I_{B}\right)^{3}\right]+s_{3}\left(1+I_{B}\right)^{3}
\end{aligned}
$$

\square As a consequence of the decision d_{3}, the funds for investment in stage 2 are

$$
s_{2}=s_{3} i_{3 B}+d_{3}\left(i_{3 A}-i_{3 B}\right)+1,000
$$

DP SOLUTION: STAGE 3

\square We select \boldsymbol{d}_{3}^{*} to maximize

$$
\begin{aligned}
f_{3}^{*}\left(s_{3}\right) & =\max _{d_{3}}\left\{r_{3}+f_{2}^{*}\left(s_{2}\right)\right\} \\
& =\max _{d_{3}}\left\{\begin{array}{l}
d_{3}\left(1.04^{3}-1.03^{3}\right)+s_{3}(1.03)^{3}+ \\
1.108 s_{2}+1,070
\end{array}\right\} \\
& =\max _{0 \leq d_{3} \leq s_{3}}\left\{2,178+1.1481 s_{3}+.0018 d_{3}\right\} \\
d_{3}^{*} & =s_{3} \quad \text { with } \quad f_{3}^{*}\left(s_{3}\right)=1.15 s_{3}+2,178
\end{aligned}
$$

DP SOLUTION: STAGE 4

$\square r_{4}=$ returns associated with the decision d_{4} realized at the end of 5 years

$$
\begin{aligned}
& =d_{4}\left(1+I_{A}\right)^{4}+\left(s_{4}-d_{4}\right)\left(1+I_{B}\right)^{4} \\
& =d_{4}\left[\left(1+I_{A}\right)^{4}-\left(1+I_{B}\right)^{4}\right]+s_{4}\left(1+I_{B}\right)^{4}
\end{aligned}
$$

\square The funds for investment in stage 3 depend explicitly on d_{4}

$$
s_{3}=s_{4} i_{4 B}+d_{4}\left(i_{4 A}-i_{4 B}\right)+\mathbf{1 , 0 0 0}
$$

DP SOLUTION: STAGE 4

\square We select \boldsymbol{d}_{4}^{*} to maximize

$$
f_{4}^{*}\left(s_{4}\right)=\max _{d}\left\{r_{4}+f_{3}^{*}\left(s_{3}\right)\right\}
$$

$$
=\max \left\{d_{4}\left(1.04^{4}-1.03^{4}\right)+s_{4}(1.03)^{4}+1.15 s_{3}+2,178\right\}
$$

$$
=\max _{0 \leq d_{4} \leq s_{4}}\left\{\mathbf{3 3 2 8}+\mathbf{1 . 1 7 7 2} s_{4}+.0156 d_{4}\right\}
$$

$$
d_{4}^{*}=s_{4} \quad \text { with } \quad f_{4}^{*}\left(s_{4}\right)=1.193 s_{4}+\mathbf{3 , 3 2 8}
$$

DP SOLUTION: STAGE 5

$\square \quad r_{5}=$ returns associated with the decision d_{5}
realized at the end of 5 years

$$
\begin{aligned}
& =d_{5}\left(1+I_{A}\right)^{5}+\left(s_{5}-d_{5}\right)\left(1+I_{B}\right)^{5} \\
& =d_{5}\left[1.04^{5}-1.03^{5}\right]+s_{5}(1.03)^{5}
\end{aligned}
$$

\square The funds available in stage 5 are

$$
s_{5}=10,000
$$

\square Therefore, the funds available for investment in stage 4 are

DP SOLUTION: STAGE 5

$$
\begin{aligned}
& s_{4}=s_{5} i_{5 B}+d_{5}\left(i_{5 A}-i_{5 B}\right)+1,000 \\
& =10,000 i_{5 B}+d_{5}\left(i_{5 A}-i_{5 B}\right)+1,000
\end{aligned}
$$

\square We select d_{5}^{*} to maximize
$f_{5}^{*}\left(s_{5}\right)=\max _{0 \leq d_{5} \leq s_{4}}\left\{\frac{10,000(1.03)^{5}}{11,593}+d_{5}^{d_{5}\left(1.04^{5}-1.03^{5}\right)}+f_{4}^{*}\left(s_{4}\right)\right\}$
$1,000+600+d_{5}(-.04) \quad 1.193+3,328$

DP SOLUTION: STAGE 5

$$
=\max _{0 \leq d_{5} \leq s_{5}}\{16,830+d_{5} \underbrace{(0.0574-0.048)}_{0.097}\}
$$

$$
=16,830+0.097(10,000)
$$

$$
d_{5}^{*}=10,000 \quad \text { with } \quad f_{5}^{*}\left(s_{5}\right)=16,927
$$

OPTIMAL SOLUTION

optimal return at end of 5 years is 16,927 using the following strategy

beginning of year	investment in	
	fund A	fund B
1	10,000	0
2	STD returns $+1,000$	0
3	STD returns $+1,000$	0
4	STD returns $+1,000$	0
5	0	STD returns $+1,000$

